Minimax Rules under Zero-one Loss for a Restricted Location Parameter 1
نویسنده
چکیده
Minimax Rules Under Zero-One Loss In this paper we study the existence, structure and computation of minimax and near-minimax rules under zero-one loss for a restricted location parameter of an absolutely continuous distribution.
منابع مشابه
Minimax Rules Under Zero-One Loss for a Restricted Location
Minimax Rules Under Zero-One Loss In this paper, we obtain minimax and near-minimax nonrandomized decision rules under zeroone loss for a restricted location parameter of an absolutely continuous distribution. Two types of rules are addressed: monotone and nonmonotone. A complete-class theorem is proved for the monotone case. This theorem extends the previous work of Zeytinoglu and Mintz (1984)...
متن کاملMinimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function....
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملAlmost Equalizer, Bayes and Minimax Decision Rules
In this report minimax and near-minimax nonrandomized decision rules under zero-one loss for a restricted location parameter of an absolutely continuous distribution are obtained. Two types of rules are addressed: monotone and non-monotone. A complete-class theorem is obtained in the monotone case, where the results are an extension of a previous work of Zeytinoglu and Mintz (1984) from the cas...
متن کاملAdmissible and Minimax Estimator of the Parameter $theta$ in a Binomial $Bin( n ,theta)$ distribution under Squared Log Error Loss Function in a Lower Bounded Parameter Space
Extended Abstract. The study of truncated parameter space in general is of interest for the following reasons: 1.They often occur in practice. In many cases certain parameter values can be excluded from the parameter space. Nearly all problems in practice have a truncated parameter space and it is most impossible to argue in practice that a parameter is not bounded. In truncated parameter...
متن کامل